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We report on an effective Hubbard Hamiltonian approach for the study of electronic correlations in C20

isomers—cage, bowl, and ring—with quantum Monte Carlo and exact diagonalization methods. The tight-
binding hopping parameter, t, in the effective Hamiltonian is determined by a fit to density-functional theory
calculations, and the on-site Coulomb interaction, U / t, is determined by calculating the isomers’ affinity
energies, which are compared to experimental values. For the C20 fullerene cage we estimate tcage

�0.68–1.36 eV and �U / t�cage�7.1–12.2. The resulting effective Hamiltonian is then used to study the shift
of spectral peaks in the density of states of neutral and one-electron-doped C20 isomers. Energy gaps are also
extracted for possible future comparison with experiments.
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I. INTRODUCTION

The successful synthesis of gas phase C20 molecules dis-
playing the dodecahedral fullerene cage structure1 has in-
duced considerable research interest in this smallest fullerene
molecule partly because of the superconducting property of
electron-doped C60 materials2 in the same fullerene family
and partly because previous theoretical speculations3–5 about
the existence of such a cage molecule were confirmed. In the
experiment,1 three major C20 isomers—cage, bowl, and ring
structures—were produced. See Fig. 1 for the molecular
structures. Photoelectron spectra �PES� were also measured
for all three brominated and one-electron-doped isomers
�C20

− �. Affinity energies �AE, see definition below� were then
extracted from the PES figure, giving AEcage=2.25 eV,
AEbowl=2.17 eV, and AEring=2.44 eV, respectively. Since
PES spectra reflect both the isomers’ geometric character and
the strength of electronic correlation inside the molecules, it
is a unique opportunity to investigate the interplay between
geometry and electronic correlations in the three isomers.
Here, we shall do this by estimating the parameters in an
effective Hubbard model description of these isomers param-
etrized in terms of the on-site repulsion, U, and hopping
integral, t. We find that for the geometry with the highest
curvature, the fullerene cage, correlations effects as mea-
sured by U / t are relatively important. Experiments have also
shown evidence for solid phases of C20 fullerene cage,6,7

further emphasizing the need for understanding strong corre-
lation effects in this isomer.

The possibility of superconductivity arising from a purely
electronic mechanism in the C60 fullerenes was suggested in
the early 1990s �Ref. 8� and supported by perturbative
calculations8,9 starting from a one-band Hubbard model. In
this picture superconductivity arises from strong correlation
effects since the many-body energy levels favor electrons
residing on the same molecule as opposed to different mol-
ecules, resulting in a negative pair-binding energy. However,
extensive numerical work10 has shown that the pair-binding
energy in C60 materials is likely positive for U / t�4.5 with
larger values of U / t, inaccessible due to an increasingly se-
vere sign problem. Comparatively, C20 has a larger curvature,

and correlation effects measured in terms of U / t are there-
fore likely much more important since the curvature will
decrease t and thereby increase U / t. We previously studied
electron correlation effects in the C20 fullerene cage11 start-
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FIG. 1. �Color online� Molecular structures of C20 isomers: �a�
cage, �b� bowl, and �c� ring.
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ing from a one-band Hubbard model defined in Eq. �1�. For
the whole range of 0�U / t��, we find that the pair-binding
energy is always positive, ruling out the possibility of super-
conductivity induced solely by an electronic mechanism.
With increasing U / t there is, however, a very interesting
metal-insulator transition predicted11 to occur around U / t
�4.1 in molecular solids formed with the C20 fullerene. Ex-
periments have shown evidence for such solid phases of
C20.

6,7 We expect that most of the strong correlation effects
are fully captured by a one-band Hubbard model with a
single uniform hopping integral. In order to develop predic-
tive models of C20 materials and to determine whether such
materials will display metallic or insulating behavior, it is
then crucial to estimate how large U / t is for the C20 mol-
ecule, which is the main purpose of this paper.

Mean-field density-functional theory �DFT� calculations
have yielded conflicting predictions of the relative stability
of C20 isomers. This suggests that electron correlations,
which are only approximately treated in the DFT calcula-
tions, could be very important in the prediction of the elec-
tronic structure of C20 isomers even though the geometry of
the different isomers is fully captured in the DFT calcula-
tions. We are, therefore, inspired to study the isomers with an
effective Hamiltonian approach, where a Huckel Hamil-
tonian is complemented with an on-site electron correlation
term, i.e., the one-band Hubbard model defined on a single
C20 molecule as

H = − �
�ij��

tij�ci�
† cj� + H.c.� + U�

i

ni↑ni↓ + �p�
i

ni, �1�

where ci�
† �ci�� is an electron creation �annihilation� operator

with spin � on site i, indices i, j runs over 20 sites of the
isomers, tij is the hopping integral between nearest-neighbor
�NN� carbon atoms i and j, U is the on-site electron correla-
tion, ni=ni↑+ni↓ is the number of electrons on site i, and �p is
the on-site electronic energy due to the core ion and electrons
in the carbon atom. According to Ref. 12, we set �p
=−8.97 eV. This on-site electronic energy term is a constant
as long as the total electron number in the molecules is fixed
and is not important in calculating, e.g., the pair-binding
energy,11 but needs to be taken into account when calculating
the affinity energy of the molecules defined as

AE = E�20� − E�21� , �2�

where E�N� is the internal energy of the molecule filled with
N electrons from 2p atomic orbitals.

The idea of fitting a tight-binding Huckel Hamiltonian to
DFT energy levels for a fullerene molecule is not new and
has been employed in, e.g., Refs. 13 and 14. However, inclu-
sion of an on-site Coulomb interaction in the tight-binding
model for the fullerene molecule has not been very well
studied due to the difficulty of performing reliable calcula-
tions in the presence of such a term. In particular, the ques-
tion of what value the on-site interaction U should take has
not been answered for C20 isomers. In light of the metal-
insulator transition predicted11 to occur around U / t=4.1, a
correct determination of U / t is crucial for modeling
C20-based materials. Addressing this question is our main
goal here. The paper is organized as follows. First, since we

want the tight-binding t term �Huckel Hamiltonian� to reflect
the geometric character of each of the isomers, which is con-
tained in the DFT energy levels, we fit the Huckel energy
levels to energy levels obtained from DFT. This allows us to
determine the effective value of t for the three isomers. Here
we assume uniform hopping integrals t inside the cage and
bowl molecules for the Huckel Hamiltonian, although within
the DFT approach for the bowl isomer the hopping integrals
are not uniform5 even in the absence of any Jahn-Teller dis-
tortion. We expect this simplification for the Huckel ap-
proach to be of only minor importance for the bowl and the
cage. However, for the ring isomer, DFT calculations show
that the ring structure is dimerized5 with alternating long and
short bonds between NN carbon atoms, which leads to a
filled highest occupied molecular orbital �HOMO�, i.e., an
insulating molecule, in contrast to the uniform bonding case,
where the HOMO is not completely filled �the molecule is
metallic�. We, therefore, consider two different hopping inte-
grals for the ring Huckel Hamiltonian. As mentioned, inho-
mogeneous hopping integrals are always considered in the
DFT calculations. We then study the effect of electron corre-
lation in the neutral isomers by calculating the single-particle
excitation spectra with different correlation strengths �U / t
=2,3 ,4 ,5� and show the difference between quantum Monte
Carlo �QMC� and DFT spectra for the neutral isomers. To
complete our effective Hamiltonian approach, we proceed to
estimate the on-site Coulomb interaction strength U by cal-
culating the electron affinity energies of the isomers and
comparing them to the experimental values. This allows us to
determine U / t for each isomer, and we can then study the
effect of one-electron doping on the single-particle excitation
spectra with QMC simulations. We compare the resulting
QMC spectra to results obtained from DFT. These spectra
should be directly comparable to possible future experimen-
tal PES and inverse PES spectra.

II. ESTIMATION OF THE HUCKEL HOPPING
INTEGRAL, t

Different molecular geometries of C20 isomers determine
different NN hopping integrals, t’s, in the Huckel description
of molecules. In this section, we estimate approximate values
of t’s for the cage, bowl, and ring structures of C20 molecules
by comparing tight-binding Huckel energy diagrams �U=0�
with the energy levels from DFT calculations. In DFT calcu-
lations for the cage and bowl, 2s, 2px, 2py, and 2pz atomic
orbitals are considered, and the calculations are performed
with the widely used ABINIT code.15 Since there are four
orbitals per carbon atom in the DFT calculation, the resulting
energy levels are a mixture of � and � bonds. The � bonds
have either very low or very high energies. Energy levels
around the Fermi energy mainly consist of � bonds, which
we use to construct the Huckel Hamiltonian. The comparison
of energy levels between DFT and tight-binding Huckel
Hamiltonian should, therefore, be made around Fermi en-
ergy. Table I shows such a comparison. To fit the Huckel
hopping parameters t, we set equal the smallest energy gap
of the tight-binding Huckel Hamiltonian with an equivalent
gap in the DFT results. The degeneracy of the levels are
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important here, and since the variation in the hopping inte-
grals in the DFT approach in some cases will split levels, the
equivalent gap in the DFT approach is not necessarily the
smallest gap. In studies of strong correlation effects, it is
highly desirable to use the simplest possible model. Since for
the fullerene cage the DFT and the tight-binding model with
uniform hopping at U=0 both predict a half-filled HOMO
level and metallic behavior, we have not found it necessary
to include variations in the hopping integral. The same is true
for the bowl where a filled HOMO level is found. However,
as previously mentioned, for the ring the two approaches
disagree, and we are therefore forced to include a variation in
the hopping integrals for the ring, which we describe in de-
tail below.

We begin by discussing the fullerene cage. Here we find a
half-filled fourfold degenerate HOMO level, and hence a
metal in both the DFT �−0.985 60 eV� and tight-binding
�0tcage� results. In the tight-binding approach the first-excited
level is fourfold degenerate at 2tcage. Assuming that this four-
fold level is split into a high-lying fourfold and a lower-lying
nondegenerate level due to slight variations in the effective
hopping integrals in the DFT approach, the equivalent gap in
the DFT approach should be from the fourfold level at
−0.985 60 eV to some average of the threefold and nonde-
generate excited levels. In the extreme case we neglect the
nondegenerate level and we then see that this gap should be
close to the �1.727 66+0.985 60� eV=2.713 26 eV from
which we infer that tcage�1.36 eV. Here we have taken the
gap in the DFT calculations to go from the fourfold degen-
erate level to the threefold degenerate level. Given the split-
ting of the excited levels in the DFT approach, it seems
plausible that this is a maximal value for the gap. However,
in the absence of analytical results for the splitting of the
levels in the DFT approach we note that this is not an exact

bound. The estimate tcage�1.36 eV is then likely an upper
bound on the hopping integral. An extreme lower bound on
tcage can be obtained if we use the smallest gap of �0.37579
+0.985 60� eV=1.361 39 eV in the DFT approach, yielding
tcage
min �0.68 eV. Given the large splitting of the nondegener-

ate level from the threefold level, this lower bound seems
very unlikely to be attained and a more realistic value for
tcage is likely close to the upper bound of 1.36 eV, which we
mainly focus on in the following.

We next turn to the bowl where one in both the DFT and
tight-binding approach �U=0� finds a filled HOMO level and
hence an insulator. For the bowl we compare the tight-
binding gap of �0.477 25+0.737 64�tbowl=1.214 89tbowl from
a twofold degenerate level to another twofold degenerate
level with the �−2.153 25+5.022 72� eV=2.869 47 eV gap
in the DFT results yielding tbowl�2.36 eV. As for the
fullerene cage, we have here assumed that both twofold de-
generate levels are slightly split in the DFT approach and we
have used the largest reasonable value for the equivalent gap
in the DFT approach. Following the discussion of the hop-
ping integral for the fullerene cage, we again expect the es-
timate tbowl�2.36 eV to be an upper bound. In this case, a
reasonable lower bound on the hopping integral can be ob-
tained by taking the smallest gap in the DFT approach of
�−2.507 28+5.006 12� eV=2.498 84 eV, resulting in tbowl

min

�2.06 eV, a relatively modest variation from our previous
maximal estimate.

Finally we turn to a discussion of the ring molecule. As
mentioned, in this case a uniform tight-binding model would
predict a half-filled HOMO level where the DFT approach
shows a filled HOMO level. We are therefore forced to in-
clude a staggering in the hopping integrals in the tight-
binding approach. For the ring DFT calculation, we first gen-
erate a pseudopotential16 for the carbon atom, with four
electrons �1s22s2� in the core state and two electrons �2p2� in
the valence state. The resulting pseudopotential is then fed to
the ABINIT �Ref. 15� to carry out DFT calculations on the two
valence orbitals. On the tight-binding calculation side, we
use two hopping integrals, tl and ts, to represent the hopping
integrals of the alternating long �bl=2.609 Bohr� �Ref. 5�
and short �bs=2.260 Bohr� �Ref. 5� bonds, respectively. Let
the average of the two bonds be b= �bl+bs� /2=2.435 Bohr.
We then parametrize11 the two hopping integrals as tx / tring
=1− �bx−b� /b, where x= l ,s and tring is the average hopping
integral. With this parametrization we find tl=0.928tring and
ts=1.072tring. From Table I we see that both DFT and tight-
binding calculations now give an insulating molecule. If we
again compare the tight-binding gap of �0.144 00
+0.144 00�tring=0.288tring from a nondegenerate level to an-
other nondegenerate level with the gap between two nonde-
generate levels in the DFT results of �−7.542 51
+8.453 83� eV=0.911 32 eV, it results in an average tring
�3.16 eV.

We see that compared to the other isomers the hopping
integral is significantly smaller in the fullerene cage isomer
due to the large curvature of the molecule that reduces the
NN overlap of the 2p orbitals. Consequently, tcage for the C20
fullerene is also significantly smaller than what was found
for the much bigger and less curved C60 where one observes
tC60

=2.50 eV according to our calculation with ABINIT as

TABLE I. Comparison of energy levels around the Fermi energy
from DFT calculation and Huckel Hamiltonian on the C20 isomers.
The energy from DFT is in units of eV. D is the degeneracy degree
of the corresponding energy level, and Ne is the number of electrons
occupying these energy levels. For each isomer, the energy levels
are listed in descending order.

DFT Huckel �U=0�

E �eV� D Ne E / t D Ne

Cage 1.72766 3 0 2.23607 3 0

0.37579 1 0 2.0 4 0

−0.98560 4 2 0.0 4 2

−6.65895 5 10 −1.0 5 10

Bowl −2.15325 1 0 1.0 1 0

−2.50728 1 0 0.47725 2 0

−5.00612 1 2 −0.73764 2 4

−5.02272 1 2 −0.77748 2 4

Ring −6.96644 1 0 0.63303 2 0

−7.54251 1 0 0.14400 1 0

−8.45383 1 2 −0.14400 1 2

−8.94745 1 2 −0.63303 2 4
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well as Ref. 14 or 2.72 eV according to Satpathy’s early
calculation.13 It is also noteworthy that our estimate is likely
an upper bound on tcage. We also note that tring�2tcage, which
reflects the fact that tring is the hopping integral of four 2p
orbitals as apposed to tcage being the hopping integral of two
2p� orbitals.

III. DENSITY OF STATES FROM DFT CALCULATION

Before we study the effect of electronic correlation with
QMC, we calculate the density of states �DOS� for the neu-
tral C20 isomers within DFT, shown in Fig. 2. We see that
both the bowl and ring are insulators, with energy gaps
�bowl

DFT =2.4 eV and �ring
DFT=1.4 eV for the neutral molecule.

The fullerene cage isomer is, however, metallic. Electron
correlations are typically underestimated in DFT calcula-
tions, and it therefore seems reasonable to assume that the
inclusion of on-site electronic correlations would enlarge the
gap, eventually turning the cage C20 isomer into an insulator.
Such an effect was shown to occur in Ref. 11.

IV. EFFECT OF ON-SITE CORRELATION

As mentioned, DFT calculations typically underestimate
electron correlations. However, with the overlap integral, t,
determined we can attempt to more closely describe the
physics in the vicinity of the Fermi energy by using an ef-

fective one-band Hubbard model �Eq. �1�	 to account for the
electron correlations. To perform such a study of on-site
electronic correlation on the C20 isomers we use the standard
QMC algorithm.17–19 In regimes where the sign problem in
this approach renders results unobtainable, we supplemented
these results by exact diagonalization �ED� results. This al-
lows us to determine the DOS as a function of U / t. The DOS
is calculated for each of the neutral isomers for U / t
=2,3 ,4 ,5. Our results are shown in Fig. 3. As expected, the
energy gap increases with increasing U / t values for the bowl
and the ring. The dependence on U / t is clearly nontrivial.
For the fullerene cage the initially metallic molecule be-
comes insulated with increasing �U / t�cage. For molecular sol-
ids formed out of this isomer a metal-insulator transition is
therefore expected around �U / t�cage=4.1.11

In Sec. V we estimate the on-site Coulomb interaction U
using the affinity energy of the isomers. However, assuming
that the on-site electronic energy scale is U�10 eV for all
the isomers,20–23 we can do a rough estimate of U / t and
hence estimate the gap for the neutral molecule from the
above QMC results for the DOS. Using this value for U we
find that U / t�4.2,3.2 for the bowl and ring isomers, respec-
tively, using tring�3.16 eV and the upper bound tbowl
�2.36 eV. For these values of U / t and from Fig. 3, we
estimate energy gaps for the neutral bowl and ring isomers to
be about �bowl=2.0tbowl=4.72 eV and �ring=0.9tring
=2.73 eV, respectively. For the cage isomer �U / t�cage should
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FIG. 2. �Color online� DOS from DFT for neutral cage, bowl,
and ring C20 isomers. Fermi energy is located at �=0. Shaded areas
are occupied by electrons.
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FIG. 3. �Color online� Evolution of the DOS with different U / t
values for neutral C20 isomers: cage, bowl and ring. U / t=5 for cage
isomer is from exact diagonalization �Ref. 11�. Others are from
QMC simulations. Fermi energies are located at �=0.
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be around 7, using the upper bound tcage=1.36 eV. Unfortu-
nately, the sign problem prevents us from calculating the
DOS and hence the gap by QMC simulations for �U / t�cage
	3, and we have to resort to the much more time consuming
ED approach. Previously, using ED techniques, the DOS and
gap at �U / t�cage=5 have been determined,11 yielding a gap of
1.89 eV. �see Fig. 3�. We have repeated this calculation at
�U / t�cage=10, finding a gap of 7.67 eV. Linearly interpolat-
ing between these values we estimate the gap for the
fullerene cage at �U / t�cage�7 to be �cage=3.1tcage=4.2 eV.

V. ESTIMATE OF THE ON-SITE INTERACTION, U Õ t

Electron correlations are important for an accurate calcu-
lation of the affinity energy, as shown by early QMC simu-
lations �see, e.g., Ref. 24�. Therefore, starting from the affin-
ity energy, one can use QMC simulations to determine
electron correlations, which in the case of Hubbard model
are represented by the on-site interaction U. Since the elec-
tron affinity energies, AE, were measured experimentally,1

we can use these energies for a more refined estimate of the
value of the on-site effective Coulomb interaction U for each
of the isomers. Ground state energies of the isomers are cal-
culated with projection QMC technique18 in the Hilbert
space of fixed particle number N and magnetization and con-
verted to electron volts using the previously determined es-
timates for t. The affinity energy AE=E�20�−E�21� is then
subtracted and shown in Fig. 4 as a function of U / t. Results
are shown using the upper bound for t for the cage and bowl.
The sign problem prevents us from simulating larger U / t
values with QMC. Instead we use ED to obtain a series of
AE for U / t=2,5 ,6 ,7 ,8 ,10 for the cage isomer. Note that
for the fullerene cage the electron affinity changes slope
around the expected critical value of �U / t�cage=4.1.11 We see
that all three curves are approximately linear around the
experimental affinity energy values1 �AEcage=2.25 eV,

AEbowl=2.17 eV, and AEring=2.44 eV�. Thus, a linear inter-
polation gives Ucage=7.1tcage, Ubowl=4.30tbowl, and Uring
=3.27tring. If we, for the fullerene cage, perform a similar
analysis using tcage

min =0.68 eV we find instead an even larger
value for �U / t�cage�12.2. Likewise, we find for the bowl
using tbowl

min =2.06 eV, a value of �U / t�bowl=4.9.
The above results �Fig. 4� show that for cage, bowl, and

ring isomers the on-site Coulomb interaction energies are
Ucage=7.1tcage=9.67 eV, Ubowl=4.30tbowl=10.15 eV, and
Uring=3.27tring=10.33 eV, all of which are reasonably close
to 10 eV, i.e., the value that was used in Sec. IV. The varia-
tion in U / t between the isomers is minor, and the consis-
tency between these results and those of Sec. IV supports our
approach of determining t from DFT calculations. Using the
upper bounds on U / t for the cage and the bowl with the
associated minimal values for the hopping integrals results in
U=8.3 and U=10.09 eV, respectively. It is noteworthy that
the value of �U / t�cage is clearly beyond the metal-insulator
transition point U / t=4.1 predicted in Ref. 11. This suggests
that undoped molecular solids formed with dodecahedral C20
are insulators, and the isolated molecule is likely not Jahn-
Teller active.11

In conclusion, the estimation of U / t using the molecular
affinity energy in combination with a determination of the
hopping integral t from DFT is a reasonable approach for the
cage, bowl, and ring isomers. We summarize all the isomer
parameters in Table II.

VI. ENERGY GAPS AND EFFECT OF ELECTRON
DOPING

We proceed to study the effect of one-electron doping on
the single-particle excitation spectra of C20 bowl and ring
isomers with QMC simulations using the hopping integrals
tbowl�2.36 eV and tring=3.16 eV and on-site Coulomb in-
teraction strength U estimated above. A similar study of the
fullerene cage would require time consuming ED calcula-
tions, which we have not performed. The DOS are shown in
Fig. 5. We see that with one-electron doping, spectral peaks
for both bowl and ring move toward Fermi levels. Clearly,
the one-electron-doped bowl becomes metallic. For the one-
electron-doped ring, the spectral weight is very close to the
Fermi energy. However, within the precision of the QMC
results, we expect the doped ring to remain an insulator with
a gap �ring−

QMC=3.2 eV. This is in contrast to DFT energy lev-
els �Table I�, which show that with one-electron doping both
the bowl and the ring isomers become metallic.

From these figures we can also estimate the energy gaps
for the neutral bowl and ring to be around �bowl

QMC=4.0 eV

TABLE II. Hopping t and on-site Coulomb interaction U for C20

isomers: cage, bowl, and ring.

t �eV� U �eV� U / t

Cage 0.68–1.36 8.3–9.67 7.1–12.2

Bowl 2.06–2.36 10.09–10.15 4.30–4.9

Ring 3.16 10.33 3.27

1 2 3 4 5 6 7 8 9 10

U/t

-2

0

2

4

6

8
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E

(e
V

)

cage,QMC
cage, ED
bowl,QMC
ring, QMC

FIG. 4. �Color online� Variation in affinity energy with U / t for
the C20 cage, bowl, and ring from QMC and ED calculations. The
experimental AE values are shown by the horizontal lines intercept-
ing the AE�U / t curves. The corresponding U / t values are shown
by the vertical lines intercepting the curves. Results are shown us-
ing the upper bound for t for the cage and bowl.
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and �ring
QMC=3.6 eV in reasonable agreement with the rough

estimate given in Sec. IV. We note that these values are much
larger than the corresponding DFT values �bowl

DFT =2.4 eV and
�ring

DFT=1.4 eV. From the above discussion we expect our
previous estimate of the gap for the fullerene cage of �cage
=3.1tcage=4.2 eV at �U / t�cage�7 to be relatively precise.
Hopefully, these estimates of the gaps can be compared to
future experimental PES and inverse PES of the neutral C20
isomers.

VII. CONCLUSIONS

We proposed an effective Hamiltonian approach to study
the electronic correlations in C20 isomers with QMC simula-
tions and exact diagonalization. The hopping integral, t, in an
effective one-band Hubbard model Hamiltonian is deter-
mined by comparing DFT energy levels with the tight-
binding Huckel energy levels. On-site Coulomb interactions,
U, are then determined by comparison to the experimental
affinity energies of the isomers. With these estimated param-
eters, QMC calculations of the resulting effective Hubbard
model then predict insulating behavior of the neutral �cage,
bowl, and ring� and one-electron-doped �ring� isomers and
metallic behavior of the one-electron-doped bowl isomer. We
find qualitative agreement between QMC and DFT calcula-
tions for neutral �bowl and ring� isomers and one-electron-
doped bowl isomer, although QMC gives much larger energy
gaps for the neutral isomers. For the neutral cage isomer, the
QMC prediction �insulating� is qualitatively different from
DFT calculations �metallic� since the cage C20 is the most
strongly correlated molecule of the three isomers with a ratio
of on-site Coulomb interaction and hopping integral of
�U / t�cage�7.1–12.2 exceeding the value of 4.1 for the pre-
dicted metal-insulator transition. Results presented in the pa-
per await a comparison with possible future PES and inverse
PES experiments on the gas phase of C20 isomers.
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FIG. 5. �Color online� QMC results for the DOS of one-
electron-doped C20 �solid lines� compared with the neutral mol-
ecules �dashed lines�. For the bowl, �U / t�bowl=4.30; for the ring,
�U / t�ring=3.27. Shaded areas are occupied by electrons. Fermi en-
ergies are located at �=0. Energy units have been converted to eV
using tbowl=2.36 eV and tring=3.16 eV, respectively. Energy gaps
for the neutral molecules and doped ring are shown in the figure.
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